Covariance matrix plays an important role in risk management, asset pricing, and portfolio allocation. Covariance matrix estimation becomes challenging when the dimensionality is comparable or much larger than the sample size. A widely used approach for reducing dimensionality is based on multi-factor models. Although it has been well studied and quite successful in many applications, the quality of the estimated covariance matrix is often degraded due to a nontrivial amount of missing data in the factor matrix for both technical and cost reasons. Since the factor matrix is only approximately low rank or even has full rank, existing matrix completion algorithms are not applicable. We consider a new matrix completion paradigm using the factor models directly and apply the alternating direction method of multipliers for the recovery. Numerical experiments show that the nuclear-norm matrix completion approaches are not suitable but our proposed models and algorithms are promising.
Linear programming models have been widely used in input-output analysis for analyzing the interdependence of industries in economics and in environmental science.In these applications,some of the entries of the coefficient matrix cannot be measured physically or there exists sampling errors.However,the coefficient matrix can often be low-rank.We characterize the robust counterpart of these types of linear programming problems with uncertainty set described by the nuclear norm.Simulations for the input-output analysis show that the new paradigm can be helpful.