The corrosion behavior of tinplate cans containing coffee was investigated using novel electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) sensors.The contents of iron and tin dissolved in cans were detected by inductively coupled plasma mass spectrometer(ICP-MS),and the morphology of corroded surface was observed by optical microscopy and scanning probe microscopy(SPM).The results reveal that the coating resistance,charge transfer resistance and noise resistance decrease with the prolongation of storage time.The iron and tin contents in cans increase with the storage time,while the bump height of coating surface increases from 30 nm to 80 nm during the corrosion of twelve months.The existence of deformation would enhance the corrosion process of tinplate cans.Finally,the corrosion mechanism of tinplate cans in coffee was proposed.
The corrosion process of tinplate in 0.5 mol/L NaCl solution was investigated using the electrochemical impedance spectroscopy(EIS),and the morphology and structure of the corrosion products were characterized by scanning electron microscope(SEM),scanning probe microscopy(SPM),X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS).The results showed that the resistance of tin coating,Rc,was essentially constant but the charge transfer resistance,Rct,decreased by 2 orders of magnitude,which indicated that the tin coating was not seriously corroded while the carbon steel substrate was corroded continuously.The corrosion of tinplate in 0.5 mol/L NaCl solution was mainly the dissolution of carbon steel substrate because of the defects in the tin layer and the corrosion product was mainly γ-FeOOH.
The degradation coefficient is proposed to evaluate the degradation degree of organic coatings by directly anaIyzing the Bode plots of the electrochemical impedance spectroscopy (EIS) data. This paper investigated the degradation of phenolic epoxy coating/tinplate system by EIS and the degradation coefficient value, which correlates well with the results of breakpoint frequency and variation of phase angle at 10 Hz. Furthermore, the degradation process was confirmed by scanning electron microscope (SEM) and scanning probe microscopy (SPM). It is concluded that degradation coefficient can be used for the fast evaluation of degradation degree of organic coatings in practical appli- cations.