The Cu2ZnSnS4 thin film was prepared by a facile solution method without vacuum environment and toxic substance. The formation mechanism of the film was studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and Raman scattering measurements. Through cyclic voltammetry and photo-electricity tests, the electrocatalytic activity of the prepared film as the counter electrode of dye-sensitizedsolar cell was also studied. The results show that the mixed precursor solution mainly consists of Cu2SnS3 nanoparticles and Zn ions.After 550 °C annealing process on the precursor film prepared from the mixed solution, Cu2ZnSnS4 thin film is obtained. Besides, itis found that the prepared Cu2ZnSnS4 thin film has the electrocatalytic activity toward the redox reaction of I3?/I? and the dye-sensitized solar cell with the prepared Cu2ZnSnS4 thin film as the counter electrode achieves the efficiency of 1.09%.
Zheng-fu TONGJia YANGChang YANMeng-meng HAOFang-yang LIULiang-xing JIANGYan-qing LAIJie LIYe-xiang LIU
在560℃的硫气氛中退火处理溶胶-凝胶法制备的薄膜前躯体,制备太阳电池光吸收层铜锌锡硫(CZTS)薄膜。采用X线能量色散谱、扫描电镜、X线衍射、拉曼光谱和紫外-可见-近红外分光光度计等对薄膜进行表征。研究结果表明:制备的CZTS薄膜为贫铜富锌成分,呈现锌黄锡矿结构;薄膜禁带宽度约为1.50 e V,在可见光区域内光吸收系数达到104 cm-1;制作的结构为Ag/Zn O:Al/i-Zn O/Cd S/CZTS/Mo/SLG的薄膜太阳电池器件的电池开路电压、短路电流密度、填充因子和光电转换效率分别为658 m V,16.75 m A/cm2,0.47和5.18%,表明溶胶-凝胶法有望成为制备廉价高效的CZTS薄膜太阳电池的有效途径。