Inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectroscopy, hydride generation-atomic fluorescence spectrometry, emission spectrometry, X fluorescence spectrometry, and X-ray diffraction were employed to study the geochemistry and mineralogy of coal gangues from Nos. 2, 3, and 8 coal seams of the Du'erping coal mine, Xishan coalfield, Taiyuan, Shanxi Province. The study revealed that compared with the sedimentary cover, upper continent crust, Carboniferous-Permian coal from North China, as well as most coal in China, coal gangues from Nos. 2 and 3 coal seams are rich in Li, Be, Sc, Cr, Cu, Ga, Ba, Th, Nb, Cd, Pb, Ta and rare-earth elements, and coal gangues from No. 8 coal seam are rich in Li, Sc, V, Cr, Ga, U, and rare-earth elements. Compared with the Carboniferous-Permian coal from North China and most coal in China, coal gangues from Nos. 2, 3 and 8 seams are rich in Rb, V, Cs and Sr. Therefore, The Du'erping coal gangues in the Xishan coalfield are rich in most hazardous trace elements and rare-earth elements, wherein the contents of Ga and Li reach the industrial grade and have significance for industrial utilization. On the whole, coal gangues of the Shanxi Formation from the Permian are rich in more trace elements than those of the Carboniferous Taiyuan Formation. The distributions of REE show obviously dipping rightwards with negative Eu anomalies. The contents of rare-earth elements in the three seams are quite different. All of the above indicate that the source of the rare-earth elements is terrigenous debris. Minerals in No. 2 seam identified by X-ray diffraction mainly include quartz, kaolinite, in addition to calcite, pyrite, apatite, epidote, and epsomite. No. 3 seam mainly contains quartz, kaolinite, in addition to a small amount of sodium feldspar, calcium nitrate, iron ore, gypsum, and vivianite. No. 8 seam mainly contains kaolinite, dickite, quartz, illite, and a small amount of hematite and U. The correlations between major elements and trace elemen
During transient electromagnetic method (TEM) exploration of a copper mine, we detected the late-channel TEM signal reversal phenomenon (a voltage change from positive to negative) caused by the influence of the induced polarization (IP) effect, which affects the depth and precision of the TEM detection. The conventional inversion method is inefficient because it is difficult to process the data. In this paper, the Cole-Cole model is adopted to analyze the effect of Dc resistivity, chargeability, time constant, and frequency exponent on the TEM response in an homogeneous half space model. Singular Value Decomposition (SVD) is used to invert the measured TEM data, and the Dc resistivity, chargeability, time constant and frequency exponent were extracted from the measured TEM data in the mine area. The extracted parameters are used for interpreting the detection result as a supplement. This reveals why the TEM data acquired in the area has a low resolution. It was found that the DC resistivity and time constant do not significantly change the results, however, the chargeability and frequency exponent have a significant effect. Because of these influences, the SVD method is more accurate than the conventional method in the apparent resistivity profile. The area of the copper mine is confined accurately based on the SVD inverted data. The conclusion has been verified by drill and is identical to the practical geological situation.