The metal-free synthesis of graphene on singlecrystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed,single-crystal silicon substrate using metal-free, ambientpressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates.
Varying the film thickness is a precise route to tune the interfacial strain to manipulate the properties of the multiferroic materials.Here,to explore the effects of the interfacial strain on the properties of the multiferroic BiFeO_3films,we investigated thickness-dependent structural and polarization evolutions of the BiFeO_3 films.The epitaxial growth with an atomic stacking sequence of BiO/TiO_2 at the interface was confirmed by scanning transmission electron microscopy.Combining X-ray diffraction experiments and first-principles calculations,a thickness-dependent structural evolution was observed from a fully strained tetragonality to a partially relaxed one without any structural phase transition or rotated twins.The tetragonality(c/a) of the BiFeO_3 films increases as the film thickness decreases,while the polarization is in contrast with this trend,and the size effect including the depolarization field plays a crucial role in this contradiction in thinner films.These findings offer an alternative strategy to manipulate structural and polarization properties by tuning the interfacial strain in epitaxial multiferroic thin films.
郭海中Ruiqiang ZhaoKui-juan JinLin GuDongdong XiaoZhenzhong YangXiaolong LiLe WangXu HeJunxing GuQian WanCan WangHuibin LuChen GeMeng HeGuozhen Yang