In order to investigate the influence of MnO2 modification methods on the catalytic performance of CuO/CeO2 catalyst for NO reduction by CO, two series of catalysts (xCuyMn/Ce and xCu/yMn/Ce) were prepared by co-impregnation and step- wise-impregnation methods, and characterized by means of X-ray diffraction (XRD), Raman spectra, H2-temperature programmed reduction (H2-TPR), in situ diffuse reflectance infrared Fourier transform spectra (in situ DRIFTS) techniques. Furthermore, the cata- lytic performances of these catalysts were evaluated by NO+CO model reaction. The obtained results indicated that: (1) The catalysts acquired by co-impregnation method exhibited stronger interaction owing to the more sufficient contact among each component of the catalysts compared with the catalysts obtained by stepwise-impregnation method, which was beneficial to the improvement of the reduction behavior; (2) The excellent reduction behavior was conducive to the formation of low valence state copper species (Cu+/Cu0) and more oxygen vacancies (especially the surface synergetic oxygen vacancies (SSOV, Cu+-n-Mn(4-x)-)) during the reaction process, which were beneficial to the adsorption of CO species and the dissociation of NO species, respectively, and further promoted the en- hancement of the catalytic performance. Finally, in order to further understand the difference between the catalytic performances of these catalysts prepared by co-impregnation and stepwise-impregnation methods, a possible reaction mechanism (schematic diagram) was tentatively proposed.
The CuO/CeO2 catalysts were investigated by means of X-ray diffraction (XRD), laser Raman spectroscopy (LRS), X-ray photoelectronic spectroscopy (XPS), temperature-programmed reduction (TPR), in situ Fourier transform infrared spectroscopy (FTIR) and NO+CO reaction. The results revealed that the low temperature (〈150℃) catalytic performances were enhanced for CO pretreated samples. During CO pretreatment, the surface Cu+/Cu0 and oxygen vacancies on ceria surface were present. The low va- lence copper species activated the adsorbed CO and surface oxygen vacancies facilitated the NO dissociation. These effects in turn led to higher activities of CuO/CeO2 for NO reduction. The current study provided helpful understandings of active sites and reaction mechanism in NO+CO reaction.
Mesoporous CeO2-MnOx binary oxides with different Mn/Ce molar ratios were prepared by hydrothermal synthesis and characterized by scanning electron microscopy (SEM), N2 sorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H2 temperature-programmed reduction (H2-TPR). The characterization results indicated that the CeO2-MnOx catalysts exhibited flower-like microspheres with high specific surface areas, and partial Mn cations could be incorporated into CeO2 lattice to form solid solution. The CeO2-MnOx catalysts showed better catalytic activity for CO oxidation than that prepared by the coprecipitation method. Furthermore, the CeO2-MnOx catalyst with Mn/Ce molar ratio of 1 in the synthesis gel (Ce-Mn-1) exhibited the best catalytic activity, over which the conversion of CO could achieve 90% at 135 ℃. This was ascribed to presence of more Mn species with higher oxida- tion state on the surface and the better reducibility over the Ce-Mn-I catalyst than other CeO2-MnOx catalysts.