Astronomical cross-matching is a basic method for aggregating the observational data of different wavelengths. By data aggregation, the properties of astronomical objects can be understood comprehensively. Aiming at decreasing the time consumed on I/O operations, several improved methods are introduced, including a processing flow based on the boundary growing model, which can reduce the database query operations; a concept of the biggest growing block and its determination which can improve the performance of task partition and resolve data-sparse problem; and a fast bitwise algorithm to compute the index numbers of the neighboring blocks, which is a significant efficiency guarantee. Experiments show that the methods can effectively speed up cross-matching on both sparse datasets and high-density datasets.