In order to obtain both high electromigration (EM) reliability and free-dimensional control in high-frequency surface acoustic wave (SAW) devices, 4-layered Ti/Al-Mo/Ti/Al-Mo electrode films were investigated on 128° Y-X LiNbO3 substrates by sputtering deposition. The resuits indicated that the 4-layered films had an improved EM reliability compared to conventional Al-0.5wt.%Cu films. Their lifetime is approximately three times longer than that of the Al-0.5wt.%Cu films tested at a current density of 5 x 107 A/cm^2 and a temperature of 200℃. Moreover, the 4-layered films were easily etched in reactive ion etching and fine-dimensional control was realized during the pattern replication for high-frequency SAW devices. For the 4-layered films, an optimum Mo quantity and sputtering parameters were very significant for high EM reliability.
The AgTCNQ thin-film was prepared by vacuum vapor co-deposition and characterized by infrared spectral analysis,and then a uniform AgTCNQ (TCNQ-- 7,7,8,8-tetracyanoquinodimethane) thin-film layer was sandwiched in a Ti/AgTCNQ/Ati crossbar structure array as organic bistable devices (OBD).A reversible and reproducible memory switching property,caused by intermolecular charge transfer (CT) in the AgTCNQ thin-film, was observed in the organic bista- ble devices. The positive threshold voltage from the high impedance state to the low impedance was about 3.8-5V, with the reverse phenomenon occurring at a negative voltage of - 3.5- - 4. 4V,lower than that with a CuTCNQ active layer. The crossbar array of OBDs with AgTCNQ is promising for nonvolatile organic memory applications.
The defects of an OLED-based display,mainly electrical shorts,cause pixels to stay dark,decrease the brightness of a panel,severely influence the display uniformity,and also consume a considerable amount of power. In this paper, for AM-OLEDs, a novel circuit employing p-type low-temperature poly-Si thin-film transistors is introduced to offer fault-tolerant capabilities for such defects. The results show that this circuit can save significant power and maintain the luminance of the pixel without changing the driving current.
A one-time programmable metal-molecule-metal device, with a modified Rotaxane LB film as the functional layer, is proposed for potential use in organic programmable and fault tolerant circuits like inorganic anti-fuse devices used in field programmable gate arrays. All fabrication methods involved are low temperature processes, ensuring that this device can be integrated with other organic devices. Electrical measurements show that this device has a good one-time programming capability. Its break down voltage is 2.2V, off-state resistance is 15kΩ, and on-state resistance is 54Ω These characteristics come from the penetration of metal atoms into molecular film under high electronic field.