The microstructural evolution and oxidation resistance of multi-walled carbon nanotubes (MWCNTs) by di- rectly heating silicon powder and MWCNTs in a coke bed from 1000 to 1500 ~C are investigated with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and thermogravimetry-differential scanning calorimetry (TG-DSC). The results showed that the morphology and microstructure of MWCNTs did not change much after being treated from 1000 ~C to 1200 ~C. An obvious SiC coating was formed on the surface of MWCNTs from 1300 to 1400 ~C. Up to 1500 ~C, nearly all the MWCNTs transformed into SiC nanowires. The oxidation resistance of the treated MWCNTs was improved compared with as-received ones. Non-isothermal kinetics showed that the oxidation activation energy of the treated MWCNTs reached 208 kJ/mol, much higher than 264 k J/tool of as-received ones.
Ming LUO Yawei Li Shengli Jin Shaobai Sang Lei Zhao