Failure may occur catastrophically by fracture along grain boundaries when temper embrittlement induced by non-equilibrium grain-boundary segregation (NGS) of phosphorus atoms. Temper embrittlement control technigue based on the theory of NGS and deformation induced phase transformation method was studied in this paper. Grain refinement technique by deformation induced phase transformation in low-alloy steel,12Cr1MoV( which is used in steam pipeline of ships),was experimentally investigated. A single-pass hot rolling process by using a Gleeble-1500 system was performed and the experimental results showed that the grain sizes were obviously affected by the deforming temperature,strain,strain rate and the quenching cooling rate. Temper embrittlement may be controlled and obviously improved by grain refinement.
The non-equilibrium grain-boundary segregation of phosphorus in step cooling process in an industrial steel, 12CrlMoV, is studied based on the effective-time-method and compared with that in isothermal holding process. The non-equilibrium grain-boundary segregation concentration of phosphorus was measured with Auger Electron Spectroscopy (AES) and calculated based on the kinetic equations of non-equilibrium grain-boundary segregation. Results show that the calculated result is in good accordance with the experimental observation.