Model I quasi-static nonlinear fracture of aluminum foams is analyzed by considering the effect of microscopic heterogeneity. Firstly, a continuum constitutive model is adopted to account for the plastic compressibility of the metallic foams. The yield strain modeled by a two- parameter Weibull-type function is adopted in the constitutive model. Then, a modified cohesive zone model is established to characterize the fracture behavior of aluminum foams with a cohesive zone ahead of the initial crack. The tensile traction versus local crack opening displacement relation is employed to describe the softening characteristics of the material. And a Weibull statistical model for peak bridging stress within the fracture process zone is used for considering microscopic heterogeneity of aluminum foams. Lastly, the influence of stochastic parameters on the curve of stress-strain is given. Numerical examples are given to illustrate the numerical model presented in this paper and the effects of Weibull parameters and material properties on J-integral are discussed.
This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the integral transform, the problem is reduced to algebraic equations and can be solved with the collocation dots method in the Laplace domain. Time response of DSIF is calculated with the inverse Laplace integral transform. The results show that the mode Ⅱ DSIF increases with the shear relaxation parameter, shear module and Poisson ratio, while decreases with the swell relaxation parameter. Damage shielding only occurs at the initial stage of crack propagation. The singular index of crack tip is -0.5 and independent on the material parameters, damage conditions of materials, and time. The oscillatory index is controlled by viscoelastic material parameters.
Dynamic fracture behavior of a Griffith crack along the interface of an adhesive bonded material under normal loading is studied. The singular integral equations are obtained by employing integral transformation and introducing dislocation density functions. By adopting Gauss-Jacobi integration formula, the problem is reduced to the solution of algebraic equations, and by collocation dots method. their solutions can be obtained Based on the parametric discussions presented in the paper, the following conclusions can be drawn: (1) Mode I dynamic stress intensity factor (DSIF) increases with increasing initial crack length and decreasing visco-elastic layer thickness, revealing distinct size effect; (2) The influence of the visco-elastic adhesive relaxation time on the DSIF should not be ignored.