A multifunctional polymeric nanofilm of triazinedithiolsilane monosodium salt, which can resist corrosion and activatecopper surface concurrently, was prepared by galvanostatic technique and the following hydrolysis-condensation approach.Electrochemical tests were carried out to evaluate the resistant ability of nanofilm. The changes of functional groups atop thenanofilms were monitored with Fourier transform infrared spectroscopy (FT-IR) and contact angles (CA) simultaneously. Thechemical composition and the morphology of the polymeric nanofilm were investigated by X-ray photoelectron spectroscopy (XPS)and scanning electron microscope (SEM), respectively. The results reveal that the preferentially developed disulfide units protect thecopper during the whole preparation process, and the subsequently hydrolyzed nanofilms without/with heating shape into newinterface phases bearing the multifunctionality. This multifunctional interface (the polymeric nanofilm on copper surface) opens upthe possibilities for other OH-containing reagents to be anchored onto copper surface in demanding researches or industrialapplications.