A new style of discharge process from a vertical open-top pipe with capillary outlet is reported. The outflux fluctuates greatly with time and the bulk condensed granular flow in the pipe shows stop-and-go motion when the filling height is above a threshold. When the filling height falls to- wards the threshold, led by a transitional stage, the outflux and the bulk movement become much stable. The upper surface dropping velocity variation is measured. A heuristic theory is proposed to understand the stop-and-go motion and the transitional behavior.
In a set of vibrating quasi-two-dimensional containers with the right-hand sidewall bent inward, three new segregation patterns have been identified experimentally including a Two-Side segregation Pattern, a Left-hand Side segregation Pattern and a pattern where big particles aggregate to the upper left part of the container. In a container with small bending degree, either the two-side segregation pattern or the left-hand side segregation pattern is stable, which is determined by the initial distribution of particles.