In response to variable environmental conditions, guard cells located in the leaf epidermis can integrate and cope with a multitude of complicated stimuli, thereby making stomata in an appro- priate state. However, many signaling components in guard cell signaling remain elusive. In our laboratory, a tool for non-invasive remote infrared thermal images was used to screen an ethyl methane sulfonate-mutagenized population for Arabidopsis stomatal response mutants under multiple stresses (ABA, H2O2, CO2, etc.). More than forty "hot" or "cold" mutants were isolated (above or below 0.5℃ in con- trast to normal plantlets). Identification and primary genetic analysis of these mutants show that they are monogenic recessive mutations and there exist distinct difference in stomata apertures compared to wild type. These mutants in response to various environmental stresses and hormones were comprehen- sively investigated, which enables us to further un- derstand the cross-talk in different signal transduction pathways.
SONG Yuwei KANG Yanli LIU Hao ZHAO Xiaoliang WANG Pengtao AN Guoyong ZHOU Yun MIAO Chen SONG Chunpeng
To gain insight into the coordination of gene expression profiles under abscisic acid (ABA) and H2O2 applications, global changes in gene expression in response to ABA and H2O2 in Arabidopsis seedlings were investigated using GeneChip (Santa Clara, CA, USA) arrays. Among over 24 000 genes present in the arrays, 459 tran- scripts were found to be significantly increased, whereas another 221 decreased following H2O2 treatment compared with control. Similar to treatment with H2O2, ABA treatment elevated the transcription of 391 genes and repressed that of 322 genes. One hundred and forty-three upregulated genes and 75 downregulated genes were shared between the two treatments and these genes were mainly involved in metabolism, signal transduction, transcription, defense, and resistance. Only two genes, which encode an APETALA2/dehydra- tion-responsive element binding protein (AP2/DREBP) family transcriptional factor and a late embryogenesis- abundant protein, were downregulated by H202, but upregulated by ABA. These results suggest that, similar to ABA, H202 plays a global role in gene transcription of Arabidopsis seedlings. The transcriptional responses induced by the application of exogenous ABA and H2O2 overlapped substantially. These two treatments regulated most of the downstream genes in a coordinated manner.
Peng-Cheng Wang Yan-Yan Du Guo-Yong An Yun Zhou Chen Miao Chun-Peng Song
To gain insight into the coordination of gene expression profiles under abscisic acid (ABA) and H2O2 applicati...
Peng-Cheng Wang,Yan-Yan Du,Guo-Yong An,Yun Zhou,Chen Miao and Chun-Peng Song Laboratory of Plant Stress Biology,Department of Biology,Henan University,Kaifeng 475001,China