Nonlinear parametric vibration of axially accelerating viscoelastic beams is inves-tigated via an approximate analytical method with numerical confirmations. Based on nonlinear models of a finite-small-stretching slender beam moving at a speed with a periodic fluctuation, a solvability condition is established via the method of multiple scales for subharmonic resonance. Therefore, the amplitudes of steady-state periodic responses and their existence conditions are derived. The amplitudes of stable steady-state responses increase with the amplitude of the axial speed fluctuation, and decrease with the viscosity coefficient and the nonlinear coefficient. The minimum of the detuning parameter which causes the existence of a stable steady-state periodic response decreases with the amplitude of the axial speed fluctuation, and increases with the viscosity coefficient. Nu-merical solutions are sought via the finite difference scheme for a nonlinear par-tial-differential equation and a nonlinear integro-partial-differential equation. The calculation results qualitatively confirm the effects of the related parameters pre-dicted by the approximate analysis on the amplitude and the existence condition of the stable steady-state periodic responses. Quantitative comparisons demonstrate that the approximate analysis results have rather high precision.
CHEN LiQun1,2 & DING Hu2 1 Department of Mechanics, Shanghai University, Shanghai 200444, China
A computational technique is proposed for the Galerkin discretization of axially moving strings with geometric nonlinearity. The Galerkin discretization is based on the eigenfunctions of stationary strings. The discretized equations are simplified by regrouping nonlinear terms to reduce the computation work. The scheme can be easily implemented in the practical programming. Numerical results show the effectiveness of the technique. The results also highlight the feature of Galerkin's discretization of gyroscopic continua that the term number in Galerkin's discretization should be even. The technique is generalized from elastic strings to viscoelastic strings.
This paper investigates nonlinear dynamical behaviors in transverse motion of an axially accelerating viscoelastic beam via the differential quadrature method. The governing equation, a nonlinear partial-differential equation, is derived from the viscoelastic constitution relation using the material derivative. The differential quadrature scheme is developed to solve numerically the governing equation. Based on the numerical solutions, the nonlinear dynamical behaviors are identified by use of the Poincare map and the phase portrait. The bifurcation diagrams are presented in the case that the mean axial speed and the amplitude of the speed fluctuation are respectively varied while other parameters are fixed. The Lyapunov exponent and the initial value sensitivity of the different points of the beam, calculated from the time series based on the numerical solutions, are used to indicate periodic motions or chaotic motions occurring in the transverse motion of the axially accelerating viscoelastic beam.
Nonlinear models of transverse vibration of axially moving beams are computationally investigated. A partial-differential equation is derived from the governing equation of coupled planar motion by omit- ting its longitudinal terms. The model can be reduced to an integro-partial-differential equation by av- eraging the beam disturbed tension. Numerical schemes are respectively presented for the governing equations of coupled planar and the two governing equations of transverse motion via the finite dif- ference method and differential quadrature method under the fixed boundary and the simple support boundary. A steel beam and a copper beam are treated as examples to demonstrate the deviations of the solutions to the two transverse equations from the solution to the coupled equation. The numerical results indicate that the differences increase with the amplitude of vibration and the axial speed. Both models yield almost the same precision results for small amplitude vibration and the inte- gro-partial-differential equation gives better results for large amplitude vibration.
DING Hu1 & CHEN LiQun1,2 1 Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China