In order to make a 10 Gbit/s 2:1 half-rate multiplexer operate without external clocks, a 5 Gbit/s clock recovery (CR) circuit is needed to extract the desired clock from one input data. For the CR circuit, a 3-stage ring voltage-controlled oscillator (VCO) is employed to avoid an unreliable startup of a 2-stage VCO and a low oscillation frequency of a 4-stage VCO. A phase frequency detector (PFD) is used to expand the pull-in range to meet the wide tuning range of a VCO required by process-voltage-temperature (PVT) variation. SMIC 0. 18-μm CMOS technology is adopted and the core area is 170 μm ×270 μm. Measurements show that, under a 1.8 V supply voltage, it consumes only about 90 mW, and has an input sensitivity of less than 25 mV, an output single-ended swing of above 300 mV, a phase noise of - 114 dBc/Hz at 1 MHz offset and a pull-in range of 1 GHz.
This paper presents an analytical three-dimensional breakdown model of SOI lateral power devices with a circular layout. The Poisson equation is solved in cylindrical coordinates to obtain the radial surface potential and electric field distributions for both fully- and partially-depleted dr/ft regions. The breakdown voltages for N+N and P+N junctions are derived and employed to investigate the impact of cathode region curvature. A modified RESURF criterion is proposed to provide a design guideline for optimizing the breakdown voltage and doping concentration in the drift region in three dimensional space. The analytical results agree well with MEDICI simulation results and experimental data from earlier publications.