The problem considered is a mode Ⅲ crack lying parallel to the interface of an exponential-type functional graded material (FGM) strip bonded to a linear-type FGM substrate with infinite thickness. By applying the Fourier integral transform, the problem was reduced as a Cauchy singular integral equation with an unknown dislocation density function. The collocation method based on Chebyshev polynomials proposed by Erdogan and Gupta was used to solve the singular integral equation numerically. With the numerical solution, the effects of the geometrical and physical parameters on the stress intensity factor (SIF) were analyzed and the following conclusions were drawn: (a) The region affected by the interface or free surface varies with the material rigidity, and higher material rigidity will lead to bigger affected region. (b) The SIF of the crack in the affected region and parallel to the micro-discontinuous interface is lower than those of the weak discontinuous cases. Reducing the weak-discontinuity of the interface will be beneficial to decrease the SIF of the interface-parallel crack in the region affected by the interface. (c) The effect of the free surface on SIF is more remarkable than that of the interface, and the latter is still more notable than that of the material rigidity. When the effects of the interface and free surface are fixed, increase of the material rigidity will enhance the value of SIF.