The separation and recovery of Ni from the copper electrolyte by crystallization of nickel ammonium sulfate double salt were studied.It is found that the solubility of copper sulfate at the same temperature is less than that of nickel sulfate,while the solubility of copper ammonium sulfate is greater than that of nickel ammonium sulfate.So,by adding(NH_(4))_(2)SO_(4),the Ni can be selectively crystallized from the copper electrolyte.By adding(NH_(4))_(2)SO_(4)at the molar ratio of(NH_(4))_(2)SO_(4)/NiSO_(4)≤0.8,and crystallizing at−15℃for 10 h,the Ni in the copper electrolyte can be crystallized in the form of Ni(NH_(4))_(2)(SO_(4))_(2)×6H_(2)O.The qualified product of NiSO_(4)×6H_(2)O can be obtained by pyrolyzing the crystals,dissolving the pyrolysis product in water,and then concentrating the dissolved solution for crystallization.The method of double salt crystallization is a clean,environmentally-friendly,cost-effective and efficient method for separating and recovering nickel from copper electrolyte.
Yi WANGBiao LIUXue-wen WANGYu-qi MENGXing-ming WANGMing-yu WANG
The AAAc(1 : 1) was synthesized in water by As2O3 and Sb2O3 with molar ratio of 1 : 1: AAAc(1 : 1)was characterized by Raman, IR, TG/DTG, DSC, XPS and XRD. The results show that there are four peaks to vsof As-OH, As-O-Sb, Sb-OH and Sb-O-Sb in Raman spectra of AAAc(1 : 1) at 100 - 1 000 cm-1. The solution of AAAc(1 : 1) was also titrated with KOH solution. The titration results show that AAAc(1 : 1) is a hexabasic acid with dissociation constants of k1 = 3.62 × 10-2 , k2 = 3.05 × 10-3 , k3 = 6. 43 × 10-6 , k4 = 9. 78 × 10-8 ,k5 = 1.32 × 10-11 , k6 =3.87 × 10-12. AAAc(1 : 1) has a good solubility and stability in water, its solid obtained by free volatilizing water from its solution under air at ambient temperature is amorphous. Chemical and thermal analyture of AsO ( OH )2-OH-Sb ( OH )4-O-Sb ( OH )4-OH-AsO ( OH )2 or As ( OH )3-O-Sb(OH)4-O-Sb(OH)4-O-As(OH)3 (isomerism) through experimental determination and geometry optimization.
WANG Xue-wen CHEN Qi-yuan YIN Zhou-lan ZHANG Ping-min WANG Yu-wen