A new empirical approach for the seasonal prediction of annual Atlantic tropical storm number (ATSN) was developed using precipitation and 500 hPa geopotential height data from the preceding January February and April May.The 2.5°×2.5° resolution reanalysis data from both the US National Center for Environmental Prediction/the National Center for Atmospheric Research (NCEP/NCAR) and the European Center for Medium-Range Weather Forecasting (ECMWF) were applied.The model was cross-validated using data from 1979 2002.The ATSN predictions from the two reanalysis models were correlated with the observations with the anomaly correlation coefficients (ACC) of 0.79 (NCEP/NCAR) and 0.78 (ECMWF) and the multi-year mean absolute prediction errors (MAE) of 1.85 and 1.76,respectively.When the predictions of the two models were averaged,the ACC increased to 0.90 and the MAE decreased to 1.18,an exceptionally high score.Therefore,this new empirical approach has the potential to improve the operational prediction of the annual tropical Atlantic storm frequency.
Relationships between the North Pacific Oscillation (NPO) and the typhoon as well as hurricane fre-quencies are documented. The correlation between NPO index in June-July-August-September and the annual typhoon number in the western North Pacific is 0.37 for the period of 1949―1998. The NPO is correlated with the annual hurricane number in the tropical Atlantic at -0.28 for the same period. The variability of NPO is found to be concurrent with the changes of the magnitude of vertical zonal wind shear, sea-level pressure patterns, as well as the sea surface temperature, which are physically asso- ciated with the typhoons and hurricanes genesis. The NPO associated atmospheric circulation vari- ability is analyzed to explain how NPO is linked with variability of the tropical atmospheric circulation in the western Pacific and the tropical Atlantic, via the atmospheric teleconnection.
A new approach to forecasting the year-to-year increment of rainfall in North China in July-August (JA) is proposed. DY is defined as the difference of a variable between the current year and the preceding year (year-to-year increment). NR denotes the seasonal mean precipitation rate over North China in JA. After analyzing the atmospheric circulation anomalies associated with the DY of NR, five key predictors for the DY of NR have been identified. The prediction model for the DY of NR is established by using multi-linear regression method and the NR is obtained (the current forecasted DY of NR added to the preceding observed NR). The prediction model shows a high correlation coefficient (0.8) between the simulated and the observed DY of NR throughout period 1965-1999, with an average relative root mean square error of 19% for the percentage of precipitation rate anomaly over North China. The prediction model makes a hindcast for 2000-2007, with an average relative root mean square error of 21% for the percentage of precipitation rate anomaly over North China. The model reproduces the downward trend of the percentage of precipitation rate anomaly over North China during 1965-2006. Because the current operational prediction models of the summer precipitation have average forecast scores of 60%-70%, it has been more difficult to forecast the summer rainfall over North China. Thus this new approach for predicting the year-to-year increment of the summer precipitation (and hence the summer precipitation itself) has the potential to significantly improve operational forecasting skill for summer precipitation.
FAN Ke1, LIN MeiJing1,2 & GAO YuZhong3 1 Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Using correlation and EOF analyses on sea level pressure from 57-year NCEP-NCAR reanalysis data, the Arabian Peninsula-North Pacific Oscillation (APNPO) is identified. The APNPO reflects the co-variability between the North Pacific high and South Asian summer monsoon low. This teleconnec- tion pattern is closely related to the Asian summer monsoon. On interannual timescale, it co-varies with both the East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM); on decadal timescale, it co-varies with the EASM: both exhibit two abrupt climate changes in the middle 1960s and the late 1970s respectively. The possible physical process for the connections between the APNPO and Asian summer monsoon is then explored by analyzing the APNPO-related atmospheric circulations. The results show that with a strong APNPO, the Somali Jet, SASM flow, EASM flow, and South Asian high are all enhanced, and an anomalous anticyclone is produced at the upper level over northeast China via a zonal wave train. Meanwhile, the moisture transportation to the Asian monsoon regions is also strengthened in a strong APNPO year, leading to a strong moisture convergence over India and northern China. All these changes of circulations and moisture conditions finally result in an anoma- lous Asian summer monsoon and monsoon rainfall over India and northern China. In addition, the APNPO has a good persistence from spring to summer. The spring APNPO is also significantly corre- lated with Asian summer monsoon variability. The spring APNPO might therefore provide valuable in- formation for the prediction of Asian summer monsoon.
SUN JianQi1, YUAN Wei2 & GAO YuZhong3 1 Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
The self-calibrating Palmer Drought Severity Index (PDSI) is calculated using newly updated ground observations of monthly surface air temperature (SAT) and precipitation in China. The co-variabilities of PDSI and SAT are examined for summer for the period 1961-2004. The results show that there exist decadal climate co-variabilities and strong nonlinear interactions between SAT and soil moisture in many regions of China. Some of the co-variabilities can be linked to global warming. In summer,sig-nificant decadal co-variabilities from cool-wet to warm-dry conditions are found in the east region of Northwest China,North China,and Northeast China. An important finding is that in the west region of Northwest China and Southeast China,pronounced decadal co-variabilities take place from warm-dry to cool-wet conditions. Because significant warming was observed over most areas of the global land surface during the past 20-30 years,the shift to cool-wet conditions is a unique phenomenon which may deserve much scientific attention. The nonlinear interactions between SAT and soil moisture may partly account for the observed decadal co-variabilities. It is shown that anomalies of SAT will greatly affect the climatic co-variabilities,and changes of SAT may bring notable influence on the PDSI in China. These results provide observational evidence for increasing risks of decadal drought and wet-ness as anthropogenic global warming progresses.
Relationship between the Antarctic oscillation (AAO) and the western North Pacific typhoon number (WNPTN) in the interannual variability is examined in this research. The WNPTN is correlated with the AAO in June-July-August-September (JJAS) in 1949-1998 at -0.48 for the detrended time series, statistically significant at 99% level. The tropical atmospheric circulation as well as the sea surface temperature variability over the western Pacific associated with AAO has been analyzed. It follows that a positive phase of JJAS AAO corresponds to the larger magnitude of the vertical zonal wind shear, the anomalous low-lever anticyclonic circulation and anomalous high-level cyclonic circulation, and lower sea surface temperature in the major typhoon genesis region in the western North Pacific, thus providing unfavorable environment for the typhoon genesis, and vice versa.
Recent observational study has shown that the southern center of the summer North Atlantic Oscillation (SNAO) was located farther eastward after the late 1970s compared to before. In this study, the cause for this phenomenon is explored. The result shows that the eastward shift of the SNAO southern center after the late 1970s is related to the variability of the Mediterranean-Black Sea (MBS) SST. A warm MBS SST can heat and moisten its overlying atmosphere, consequently producing a negative sea level pressure (SLP) departure over the MBS region. Because the MBS SST is negatively correlated with the SNAO, the negative SLP departure can enhance the eastern part of the negative-phase of the SNAO southern center, consequently producing an eastward SNAO southern center shift. Similarly, a cold MBS SST produces an eastward positive-phase SNAO southern center shift. The reason for why the MBS SST has an impact on the SNAO after the late 1970s but why it is not the case beforehand is also discussed. It is found that this instable relationship is likely to be attributed to the change of the variability of the MBS SST on the decadal time-scale. In 1951 1975, the variability of the MBS SST is quite weak, but in 1978 2002, it becomes more active. The active SST can enhance the interaction between the sea and its overlying atmosphere, thus strengthening the connection between the MBS SST and the SNAO after the late 1970s. The above observational analysis results are further confirmed by sensitivity experiments.