A fourth-order variational inequality of the second kind arising in a plate frictional bending problem is considered. By using regularization method, the original problem can be formulated as a differentiable variational equation, and the corresponding discrete FEM variational equation is presented afterwards. Abstract error estimates and error estimates of the approximation are derived in terms of energy norm and L^2-norm.
This paper presents eight-node solid-shell elements for geometric non-linear analyze of piezoelectric structures. To subdue shear, trapezoidal and thickness locking, the assumed natural strain method and an ad hoc modified generalized laminate stiffness matrix are employed. With the generalized stresses arising from the modified generalized laminate stiffness matrix assumed to be independent from the ones obtained from the displacement, an extended Hellinger-Reissner functional can be derived. By choosing the assumed generalized stresses similar to the assumed stresses of a previous solid ele- ment, a hybrid-stress solid-shell element is formulated. The presented finite shell element is able to model arbitrary curved shell structures. Non-linear numerical examples demonstrate the ability of the proposed model to analyze nonlinear piezoelectric devices.