The flow of a micropolar fluid through a porous channel with expanding or contracting walls of different permeabilities is investigated. Two cases are considered, in which opposing walls undergo either uniform or non-uniform motion. In the first case, the homotopy analysis method (HAM) is used'to obtain the expressions for the velocity and micro-rotation fields. Graphs are sketched for some parameters. The results show that the expansion ratio and the different permeabilities have important effects on the dynamic characteristics of the fluid. Following Xu's model, in the second case which is more general, the wall expansion ratio varies with time. Under this assumption, the governing equations axe transformed into nonlinear partial differential equations that can also be solved analytically by the HAM. In the process, both algebraic and exponential models are considered to describe the evolution of α(t) from the initial state α0 to the final state al. As a result, the time-dependent solutions are found to approach the steady state very rapidly. The results show that the time-dependent variation of the wall expansion ratio can be ignored because of its limited effects.
An unsteady magnetohydrodynamic (MHD) boundary layer flow over a shrinking permeable sheet embedded in a moving viscous electrically conducting fluid is investigated both analytically and numerically. The velocity slip at the solid surface is taken into account in the boundary conditions. A novel analytical method named DTM- BF is proposed and used to get the approximate analytical solutions to the nonlinear governing equation along with the boundary conditions at infinity. All analytical results are compared with those obtained by a numerical method. The comparison shows good agreement, which validates the accuracy of the DTM-BF method. Moreover, the existence ranges of the dual solutions and the unique solution for various parameters are obtained. The effects of the velocity slip parameter, the unsteadiness parameter, the magnetic parameter, the suction/injection parameter, and the velocity ratio parameter on the skin friction, the unique velocity, and the dual velocity profiles are explored, respectively.
The magnetohydrodynamic (MHD) Falkner-Skan boundary layer flow over a permeable wall in the presence of a transverse magnetic field is examined. The approximate solutions and skin friction coefficients of the MHD boundary layer flow are obtained by using a method that couples the differential transform method (DTM) with the Pade approximation called DTM-Pade. The approximate solutions are expressed in the form of a power series that can be easily computed with an iterative procedure. The approximate solutions are tabulated, plotted for the values of different parameters and compared with the numerical ones obtained by employing the shooting technique. It is found that the approximate solution agrees very well with the numerical solution, showing the reliability and validity of the present work. Moreover, the effects of various physical parameters on the boundary layer flow are presented graphically and discussed.
The flow of a micropolar fluid in a semi-porous channel with an expanding or contracting wall is investigated. The governing equations are reduced to ordinary ones by using similar transformations. To get the analytic solution to the problem, the homotopy analysis method (HAM) is employed to obtain the expressions for velocity fields. Graphs are sketched and discussed for various parameters, especially the effect of the expansion ratio on velocity and micro-rotation fields.