The difference in the electrochemical behavior of hydroquinone and pyrocatechol at platinum and gold surfaces was analyzed using voltammetry and attenuated total reflection Fourier transform infrared spectroscopy. The results show that the hydroquinone derivatives are adsorbed on a gold surface with vertical orientation, which makes the electron transfer between the bulk species and the electrode surface easier than that in the case of flat adsorption of hydroquinone derivatives that occurs at a platinum electrode. The formation of the vertical conformation and the rapid process of electron transfer were also confirmed by quantum chemistry calculations. In addition, the pre-adsorbed iodine on the electrodes played a key role on the adsorbed configuration and electron transfer of redox species.
It was demonstrated feasible that underpotential deposition(UPD) of copper on a monolayer-modified gold substrate can be used to determine the gold electrode area. The deposition and stripping of a Cu adlayer can take place reversibly and stably at a bared or a self-assembled monolayer modified gold electrode. The growth kinetics of decanethiol/Au was also investigated v/a Cu UPD. The difference between the assembling kinetics determined by UPD and that by quartz crystal microbalance measurements reveals the configuration transmutation of the assembled molecules from a disordered arrangement to an ordered arrangement durinr the self-assembling processes.
HAN Dong-xueXU Xiao-yuHOU PengYANG Gui-fuNIU LiZHAO Jian-wei