This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of normal TAFA FSM were investigated. Based on the structure and the commonality, the conditions of single-axis idea, high-frequency resonance and coupling were modeled gradually. Combining these models, a holonomic system model was established to reflect and predict the performance of TAFA FSM. A model-based design method was proposed based on the holonomic system model. The design flow and design concept of the method were described. In accordance with the method, a TAFA FSM was designed. Simulations and experiments of the FSM were done, and the results of them were compared. The compared results indicate that the holonomic system model can well reflect and predict the performance of TAFA FSM. The bandwidth of TAFA FSM is more than 250 Hz; adjust time is less than 15 ms;overshoot is less than 8%; position accuracy is better than 10 μrad; the FSM prototype can satisfy the requirements.
Nanopositioning stage based on piezoelectric(PZT)actuators and flexure mechanisms has been widely used in dual-stage.Its favorable positioning accuracy and dynamic response can guarantee the high performance of the dual-stage.Here the vertical axis motion dual-stage is designed with piezoelectric actuator for the fine-stage and ball-screw drive integrated with wedge sliding mechanisms for the coarse-stage.The aim of the dual-stage is to meet the stringent requirement of scanning over a relative large range with high accuracy.The design results of the piezo-actuated nanopositioning stage show good static and dynamic performance,validated by the simulation of finite element analysis(FEA).Hysteresis nonlinearity due to the use of piezoelectric stacks for actuation is studied and compensated by aproportional-integral(PI)feedback controller.To qualify the design of the motion ranges and resolutions,an experiment platform is established.The experimental results show that the proposed dual-stage has a full range of 12 mm with the resolution of 40 nm.Guideline is provided for the design methodology of the vertical motion dual-range stages.