The function of microorganism and dissolution reaction pathway of carrollite in the bioleaching process were investigated. The results showed that both indirect and contact mechanisms influenced the leaching process. The dissolution of carrollite was significantly accelerated when bacteria were adsorbed on the mineral surface, indicating that the contact mechanism significantly affected the dissolution of carrollite. During bioleaching, the sequence of oxidation state of the sulfur moiety of carrollite was as follows: S?2→S0→S+4→S+6. Elemental sulfur precipitated on the mineral surface, indicating that the dissolution of carrollite occurred via the polysulfide pathway. The surface of carrollite was selectively corroded by bacteria, and oxidation pits with different sizes were observed at various sites. Elemental sulfur, sulfate and sulfite were present on the surface of carrollite during the leaching process, and may have formed a passivation layer on mineral surface.
An in situ characterization technique called electrochemical noise(ECN) was used to investigate the bioleaching of natural pyrite.ECN experiments were conducted in four active systems(sulfuric acid,ferric-ion,9k culture medium,and bioleaching solutions).The ECN data were analyzed in both the time and frequency domains.Spectral noise impedance spectra obtained from power spectral density(PSD)plots for different systems were compared.A reaction mechanism was also proposed on the basis of the experimental data analysis.The bioleaching system exhibits the lowest noise resistance of 0.101 MΩ The bioleaching of natural pyrite is considered to be a bio-battery reaction,which distinguishes it from chemical oxidation reactions in ferric-ion and culture-medium(9k) solutions.The corrosion of pyrite becomes more severe over time after the long-term testing of bioleaching.
The leaching kinetics of selenium from copper anode slimes was studied in a nitric acid?sulfuric acid mixture.The effects of main parameters on selenium leaching showed that the leaching rate of selenium was practically independent of stirring speed,while dependent on temperature and the concentrations of HNO3and H2SO4.The leaching of selenium includes two stages.The activation energy in the first stage is103.5kJ/mol,and the chemical reaction is the rate controlling step.It was almost independent of H2SO4concentration and dependent on HNO3concentration since the empirical reaction order with respect to HNO3concentration is0.5613.In the second stage,the activation energy is30.6kJ/mol,and the process is controlled by a mixture of diffusion and chemical reaction.The leaching of selenium was almost independent of HNO3concentration.