Biobutanol is attracting increasingly interest as a source of renewable energy and biofuels because of its many advantages over bioethanol that include higher energy density, fuel efficiency, and reduced engine damages. Currently, there is a growing interest in producing biobutanol from bioethanol, in view of the tremendous potential benefits of this transformation for the bulk production of biobutanol in a target specific manner. This perspective paper describes recent progress for the ethanol to butanol process. The different catalysts, including homogeneous and heterogeneous catalytic systems, for ethanol to butanol are outlined and compared, and the key issues and requirements for future developments are highlighted. A major challenge for further development and application of ethanol to butanol process is to find an optimal balance between different catalytic functions and to suppress the formation of side products that has plagued most catalytic bioethanol upgrading systems. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.
The reductive transformation of furfural (FAL) into furfuryl alcohol (FOL) is an attractive route for the use of renewable bio‐sources but it suffers from the heavy use of H2. We describe here a highly efficient reduction protocol for converting aqueous FAL to FOL. A single phase rutile TiO2 support with a gold catalyst (Au/TiO2‐R) that used CO/H2O as the hydrogen source catalyze this reduction efficiently under mild conditions. By eliminating the consumption of fossil fuel‐derived H2, our pro‐cess has the benefit afforded by using CO as a convenient and cost competitive reducing reagent.