This study presents a new method of 4-pipelined high-performance split multiply-accumulator (MAC) architecture, which is capable of supporting multiple precisions developed for media processors. To speed up the design further, a novel partial product compression circuit based on interleaved adders and a modified hybrid partial product reduction tree (PPRT) scheme are proposed. The MAC can perform 1-way 32-bit, 4-way 16-bit signed/unsigned multiply or multiply-accumulate operations and 2-way parallel multiply add (PMADD) operations at a high frequency of 1.25 GHz under worst-case conditions and 1.67 GHz under typical-case conditions, respectively. Compared with the MAC in 32-bit microprocessor without interlocked piped stages (MIPS), the proposed design shows a great advantage in speed. Moreover, an improvement of up to 32% in throughput is achieved. The MAC design has been fabricated with Taiwan Semiconductor Manufacturing Company (TSMC) 90-nm CMOS standard cell technology and has passed a functional test.
This paper proposes an object oriented model scheduling for parallel computing in media MultiProcessors System on Chip(MPSoC).Firstly,the Coarse Grain Data Flow Graph(CGDFG) parallel programming model is used in this approach.Secondly,this approach has the feature of unified abstraction for software objects implementing in processor and hardware objects implementing in ASICs,easy for mapping CGDFG programming on MPSoC.This approach cuts down the kernel overhead and reduces the code size effectively.The principle of the oriented object model,the method of scheduling,and how to map a parallel programming through CGDFG to the MPSoC are analyzed in this approach.This approach also compares the code size and execution cycles with conventional control flow scheduling,and presents respective management overhead for one application in me-dia-SoC.