High-static-low-dynamic-stiffness(HSLDS) nonlinear isolators have proven to have an advantage over linear isolators, because HSLDS nonlinear isolators allow low-frequency vibration isolation without compromising the static stiffness. Previously, these isolators have generally been assumed to have linear viscous damping, degrading the performance of the isolator at high frequencies. An alternative is to use nonlinear damping, where the nonlinear behavior is achieved by configuring linear dampers so they are orthogonally aligned to the excitation direction. This report compares the performances of single-stage and two-stage isolators with this type of damping with the corresponding isolators containing only linear viscous damping. The results show that both isolators with linear viscous damping and nonlinear damping reduce the transmissibility around the resonance frequencies, but the results show that the isolators with nonlinear damping perform better at high frequencies.
This paper presents an experimental study of the broadband energy harvesting and dynamic responses of an L-shaped piezoelectric cantilever beam.Experimental results show that the L-shaped piezoelectric beam generates two optimal voltage peaks when the horizontal beam size is similar to the vertical beam size.Several optimized L-shaped piezoelectric cantilever beam structures are proposed.Power generation using the inverted bistable L-shaped beam is better.It is observed experimentally that the inverted bistable L-shaped beam structure shows obvious bistable characteristics and hard spring characteristics.Furthermore,the corresponding relationship between the bistable phase portrait and the potential energy curve is found in the experiment.This is the first time that a phase portrait for stiffness hardening of an L-shaped beam has been found experimentally.These results can be applied to analysis of new piezoelectric power generation structures.
In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance principle, a cri- teflon is established by constructing an effective control identification scheme and adjusting automatically the adaptive coupling strength. The proposed control law is applied to a complex community network which is periodically synchro- nized with different chaotic states. Numerical simulations are conducted to demonstrate the feasibility of the proposed method.
A vibration-based energy harvester is essentially a resonator working in a limited frequency range.To increase the working frequency range is a challenging problem.This paper reveals a novel possibility for enhancing energy harvesting via internal resonance.An internal resonance energy harvester is proposed.The excitation is successively assumed as the Gaussian white noise,the colored noise defined by a second-order filter,the narrow-band noise,and exponentially correlated noise.The corresponding averaged root-meansquare output voltages are computed.Numerical results demonstrate that the internal resonance increases the operating bandwidth and the output voltage.