2003年5月将Karl and Tien(1992)提出的Mg(OH)2共沉淀方法应用于东海赤潮高发区水体中磷酸盐的调查。本实验条件下方法的检测限为0.004μmol/L。将该方法与传统的磷钼兰方法进行对比,常规磷钼兰法高于共沉淀法。说明水体中可能存在大量酸性条件下不稳定的磷化合物,且其不能被Mg(OH)2共沉淀,如1-磷酸核糖。此时,共沉淀法的测定值更接近水体中真实的正磷酸盐含量。共沉淀法可为赤潮爆发过程中低磷阶段的样品分析提供较可靠数据。用共沉淀法提供的测定数据分析赤潮爆发过程中水体中磷酸盐的变化,长江口磷酸盐总的分布趋势是沿岸含量较高,向外海逐渐递减。赤潮爆发过程中,随着赤潮藻类增殖,水体中磷酸盐被大量消耗,表层磷酸盐浓度迅速降低;赤潮消亡阶段,表层水体磷酸盐浓度逐渐回升,而底层由于藻类死亡后逐渐沉降磷酸盐浓度升高。
Water samples containing dissolved aluminum were collected from the Yellow and East China Seas in October-November 2000. The average concentrations of dissolved AI in the Yellow Sea (YS) and East China Sea (ECS) were 0.042 and 0.056 μ molL^-1, respectively. The concentration of dissolved aluminum decreased gradually across the continental shelf. The lower concentrations appeared in the YS cold water center and in the bottom layer at the shelf edge of the ECS, where they were 0.016 and 0.011 μmolL^-1, respectively. The distribution of dissolved Al was controlled by physical mixing processes rather than biological uptake processes. The impact of different water masses along the PN transect was calculated based on the mass balance model. The results show that the impact of the Changjiang River was mainly concentrated on the coastal area and the top thermocline water on the ECS shelf, where the impact percentage decreased from 12.6% to 1.1% in the surface water, while the contribution of the Kuroshio water was dominant on the ECS shelf in this survey, increasing from 77.6% to 97,8% along the PN transect from the Changjiang River Estuary to the Ryukyu Islands. It is concluded that aluminum can serve as a proper tracer for studying the impact of Changjiang terrestrial matter on the ECS shelf water.
The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observations of 9 cruises carried out in 2000 - 2003. The study area covers a broad range of hydrographic and chemical properties. The emphasis is put on a southeast transect from Changjiang Estuary to the Ryukyu Islands (i.e. PN section) in the East China Sea to discuss the impact of terrestdal input on the marginal seas of China. Arsenic species (TDlAs and arsenite) are determined by selective hydride generation - atomic fluorescence spectrometry (HG-AFS). TDIAs concentrations were high in the coastal area of Changjiang Estuary and decreased slightly towards the shelf region. High concentratiOns of TDIAs were also existed in the near bottom layer of shelf edge of the East China Sea which indicated another source of arsenic from the incursion of Kuroshio Waters. The seasonal variations of TDIAs in the study area depend on the hydrographic stages of Changjiang and the incursion intensity of Kuroshio Waters. Arsenite showed opposite distributions with TDIAs, with higher concentrations appeared at the surface layer of shelf region, which was positive correlated with the chlorophyll a. Biological conversion of arsenate into arsenite was hypothesized for the observed distribution pattern and its seasonal variations. The stoichoimetric ratios of As to P were estimated to be about 2×10^3 at PN Section in summer. The concentrations of dissolved arsenic in the Yellow Sea and East China Sea were comparable with other areas in the world.