Liquid-solid interface morphological evolution of SCN-2wt%H2O alloy was investigated in the presence of shear flow. It has been found that shear flow strikingly enhances the stability of planar interface at lower pulling rates. In the intermediate range of pulling rate, the interface experiences periodical oscillating "planar-cellular" and "cellular-dendritic" growth patterns. The formation of oscillating growth modes can be explained by two reasons: (i) The stabilizing effect induced by shear flow competes with the growing destabilizing effect by the increase of pulling rate, which provides the driving force for morphological evolution; and (ii) the establishment of stable solute field at the liquid-solid interface needs a period of time, leading to the result that the interface evolution can not stay stable at the equilibrium state. However, as the puling rate becomes higher, it plays more and more important roles in pattern selection and dendritic growth forms.
Light–matter interaction plays an important role in the non-equilibrium physics, especially in strongly correlated electron systems with complex phases. Photoinduced effect can cause the variation in the physical properties and produce some emergent phases. As a classical archetype, manganites have received much attention due to their colossal magnetoresistance(CMR) effect and the strong interaction of charge, spin, orbital, and lattice degrees of freedom. In this paper, we give an overview of photoinduced effect in manganites and their heterostructures. In particular, some materials, including ZnO, Si,BiFeO3(BFO), titanate-based oxides, and 0.7 Pb(Mg(1/3) Nb(2/3))O3-0.3 PbTiO3(PMN-PT) have been integrated with manganites. Heterostructures composed of these materials display some exciting and intriguing properties. We do hope that this review offers a guiding idea and more meaningful physical phenomena will be discovered in active areas of solid state physics and materials science.