This paper aims to explore cavity shape variation regularity in the acceleration phase of supercavitat- ing vehicle. According to the theory of Homogenous Equilibrium Flow,with Mixture Multiphase Model,by setting up the flow speed at the inlet boundary as a function of time,this study carried out the experiments for the supercavitation vehicle's numeral model and obtained the variation regularity of cavity shape,the viscous drag coefficient and the cavity hysteresis time when the supercavitating vehicle was in the phase of acceleration. Results show that when the vehicle is in the phase of acceleration,at the same cavitation number,the cavity size decrease with the increase of acceleration. With the decrease of cavity number,the effect of acceleration on cavity shape is smaller,but the viscous drag increases along with the increase of acceleration. On the condition when the velocity reaches equality uniform status,the cavity hysteresis decreases as the acceleration becomes smaller. On the condition of the same acceleration,the cavity hysteresis time decreases as the velocity increases.
As supercavitating projectiles move at high speed, the periodic impacts ("tail-slap") on the interior surface of the cavity generally occur due to disturbances. The interactions between the projectile and the water/cavity interface are the sources of structural vibrations, which affect the guidance of the vehicle and undermine the structural reliability. The Fluid/Structure Interaction calculation procedure of the tail-slaps of supercavitating projectile is established, and the dynamic behaviours of the projectile operating in tail-slap conditions with and without considering Fluid/Structure Interaction are obtained and compared. The responses of the projectile riding a reducing cavity are studied, and the effect of Fluid/Structure Interaction is also analyzed. The results show that the angular velocity of projectile increases as the body slowing down, and the amplitude of the elastic displacement response decreases at the beginning and increases when the cavity size is close to the diameter of the tail of projectile. The effect of Fluid/Structure Interaction reduces the amplitudes and frequencies of the impact loads and the vibration responses of the body, and when the speed is higher, the effect is more apparent.
The influence of phase-change coefficients variations in the Singhal cavitation model on the calculation results has been numerically studied. By comparing the numerical results and experimental data, the relationship between the coefficients and cavitation numbers is obtained. The calculation results of 2d axisymmetrical cylinder with 45-degree cone cavitator show that under different cavitation numbers, there are three typical kind of cavities, which are respectively main cavity, secondary cavity and rear cavity. The coefficients variations have a great influence respectively on the three type cavities in shape, collapse position, collapse strength, etc, and different cavitation numbers are corresponding to different phase-change coefficients. The cavitation flow field can be divided into three typical zones according to the cavitation number: weak-cavitation zone, secondary-cavitation zone and supercavitation zone. For 45-degree cone cavitator cylinder, the evaporation coefficients will firstly decrease and then increase with the decrease of cavitation numbers in secondary-cavitation zone, while the condensation coefficients keep relatively lower and almost unchanged. In weak-cavitation zone, there only exists the smaller main cavity attached to the model head or there is no obvious cavity. In supercavitation zone, the secondary cavity attached to the model will fall off and merge into the new rear cavity.