Femtosecond (fs) pulse laser ablation of silicon targets in air and in vacuum is investigated using a timeresolved shadowgraphic method. The observed dynamic process of the fs laser ablation of silicon in air is significantly different from that in vacuum. Similar to the ablation of metallic targets, while the shock wave front and a series of nearly concentric and semicircular stripes, as well as the contact front, are clearly identifiable in the process of ablation under 1 ×10^5 Pa, these phenomena are no longer observed when the ablation takes place in vacuum. Although the ambient air around the target strongly affects the evolution of the ablation plume, the three rounds of material ejection clearly observed in the shadowgraphs of fs laser ablation in standard air can also be distinguished in the process of ablation in vacuum. It is proven that the three rounds of material ejection are caused by different ablation mechanisms.