Acute stress concentration plays an important role in plaque rupture and may cause stroke or myocardial infarction.Quantitative evaluation of the relation between in vivo plaque stress and variations in blood pressure and flow rates is valuable to optimize daily monitoring of the cardiovascular system for high-risk patients as well as to set a safe physical exercise intensity for better quality of life.In this study,we constructed an in vivo stress model for a human carotid bifurcation with atherosclerotic plaque,and analyzed the effects of blood pressure,flow rates,plaque stiffness,and stenosis on the elastic stress and fluid viscous stress around the plaque.According to the maximum values of the mechanical stress,we define a risk index to predict the risk level of plaque rupture under different exercise intensities.For a carotid bifurcation where the blood flow divides,the results suggest that the stenosis ratio determines the ratio of the contributions of elastic shear stress and viscous shear stress to plaque rupture.A n increase of the plaque stiffness enhances the maximum elastic shear stress in the plaque,indicating that a high-stiffness plaque is more prone to rupture for given stenosis ratio.High stress co-localization at the shoulder of plaques agrees with the region of plaque injury in clinical observations.It is demonstrated that,due to the stress-shield effect,the rupture risk of a high-stiffness plaque tends to decrease under high-stenosis conditions,suggesting the existence of a specific stenosis corresponding to the maximum risk.This study may help to complement risk stratification of vulnerable plaques in clinical practice and provides a stenosis mechanical property-specific guide for blood pressure control in cardiovascular health management.
Shaoxiong YangQinghu WangWeihao ShiWencheng GuoZonglai JiangXiaobo Gong
Mechanical stimuli play critical roles in cardiovascular diseases,in which in vivo stresses in blood vessels present a great challenge to predict.Based on the structural-thermal coupled finite element method,we propose a thermal expansion method to estimate stresses in multi-layer blood vessels under healthy and pathological conditions.The proposed method provides a relatively simple and convenient means to predict reliable in vivo mechanical stresses with accurate residual stress.The method is first verified with the opening-up process and the pressure-radius responses for single and multi-layer vessel models.It is then applied to study the stress variation in a human carotid artery at different hypertension stages and in a plaque of vascular stenosis.Our results show that specific or optimal residual stresses exist for different blood pressures,which helps form a homogeneous stress distribution across vessel walls.High elastic shear stress is identified on the shoulder of the plaque,which contributes to the tearing effect in plaque rupture.The present study indicates that the proposed numerical method is a capable and efficient in vivo stress evaluation of patient-specific blood vessels for clinical purposes.
The effect of mechanical properties of erythrocytes on the near-wall motion of platelets was numerically studied with the immersed boundary method. Cells were modeled as viscous-fluid-filled capsules surrounded by hyper-elastic membranes with negligible thickness. The numerical results show that with the increase of hematocrit, the near-wall approaching of platelets is enhanced, with which platelets exhibit larger deformation and orientation angle of its near-wall tank-treading motion, and the lateral force pushing platelets to the wall is increased with larger fluctuation amplitude. Meanwhile the near-wall approaching is reduced by increasing the stiffness of erythrocytes.