The three-Coulomb-wave (3C) model is applied to study the single ionization of helium by 2 MeV/amu C6+ impact. Fully differential cross sections (FDCS) are calculated in the scattering plane and the results are compared with experimental data and other theoretical predictions. It is shown that the 3C results of the recoil peak are in very good agreement with experimental observations, and variation of the position of the binary peak with increasing momentum transfer also conforms better to the experimental results. Furthermore, the contributions of different scat- tering amplitudes are discussed. It turns out that the cross sections are strongly influenced by the interference of these amplitudes.
We report new results of triple differential cross sections for the single ionization of helium by 1-KeV electron impact at the ejection energy of 10 eV. Investigations have been made for both the perpendicular plane and the plane perpendicular to the momentum transfer geometries. The present calculation is based on the threewCoulomb wave function. Here we have also incorporated the effect of target polarization in the initial state. A comparison is made between the present calculation with the results of other theoretical methods and a recent experiment [Diirr M, Dimopoulou C, Najjari B, Dorn A, Bartschat K, Bray I, Fursa D V, Chen Z, Madison D H and Ullrich J 2008 Phys. Rev. A 77 032717]. At an impact energy of 1 KeV, the target polarization is found to induce a substantial change of the cross section for the ionization process. We observe that the effect of target polarization plays a dominant role in deciding the shape of triple differential cross sections.
利用全量子方法改进且加入核核作用(PT)的修正库仑玻恩近似(MCBPT)和前人基于半经典的方法且不考虑核核作用的修正库仑玻恩近似(MCB)计算了散射平面和垂直平面内100 Me V/amu C6+单电离氦原子的全微分截面,研究了核核作用对截面的影响.其结果与实验数据和3DW理论进行了比较.发现,对于小动量转移,MCBPT计算结果与实验符合的很好;对于大动量转移,MCB结果很好的反映了实验数据.而且,我们详细的分析了扭曲势效应对截面的影响,结果表明随着动量转移的增加扭曲势效应迅速增强.
考虑核间相互作用,利用修正的库仑玻恩(MCB-PT)模型计算了入射能量为16 Me V的O^(7+)碰撞氦单电离的全微分截面,并将计算结果与最近的实验数据和三体库仑波(3C)模型及连续扭曲波程函初态(CDW-EIS)模型所得结果进行了比较,发现MCB-PT理论结果在中间动量转移条件下binary峰的位置与实验结果符合得很好,且位于动量转移的方向上.此外,分析了扭曲效应对全微分截面的影响,表明随着动量转移的增加,扭曲效应更加明显.
用扭曲波方法,推广了修正的库仑波恩(MCB)近似计算到重离子碰撞He原子电离问题计算.检查了对75 ke V质子碰撞氦原子单电离的全微分截面的应用情况.结果表明,现在的方法定性地产生了实验的峰结构,尤其是在垂直平面.应用MCB方法研究这一碰撞体系中的后碰撞(PCI)效应,发现PCI效应对全微分截面的形状在散射平面和垂直平面都有着强烈的影响.同时,分析了扭曲效应对全微分截面的贡献.表明,随着动量转移的增加,扭曲效应的作用变得越来越重要.尤其是,扭曲效应定性解释了负角区域的结构.
Fully differential cross sections (FDCS) are calculated within a four-body model for single ionization of helium by C6+ impact at the incident energy of 100 MeV/a.u. (atomic unit). The results are compared with experimental data and other theoretical predictions. It is shown that our results are in very good agreement with experiment for three small momentum transfers in the scattering plane; however, some significant discrepancies are still present at the largest momentum transfer in both the scattering plane and the perpendicular plane. In actuality, the problem has not been explained by the theory during the last decade. Accordingly, the contributions of different scattering amplitudes to FDCS are analyzed. It is found that for the largest momentum transfer the cross section arising from a destructive interference of the three amplitudes is much smaller than the experimental data. However, the cross section due to the constructive interference of two scattering amplitudes between projectile-ionized electron interaction and projectile-passive electron interaction almost approaches the experimental data.