A novel super-hydrophobic stearic acid(STA)film with a water contact angle of 166° was prepared by chemical adsorption on aluminum wafer coated with polyethyleneimine(PEI)film. The micro-tribological behavior of the super-hydrophobic STA monolayer was compared with that of the polished and PEI-coated Al surfaces.The effect of relative humidity on the adhesion and friction was investigated as well.It was found that the STA monolayer showed decreased friction,while the adhesive force was greatly decreased by increasing the surface roughness of the Al wafer to reduce the contact area between the atomic force microscope(AFM)tip and the sample surface to be tested.Thus the friction and adhesion of the Al wafer was effectively decreased by generating the STA monolayer, which indicated that it could be feasible and rational to prepare a surface with good adhesion resistance and lubricity by properly controlling the surface morphology and the chemical composition.Both the adhesion and friction decreased as the relative humidity was lowered from 65% to 10%,though the decrease extent became insignificant for the STA monolayer.
The LiFePO4 nanotubes were successfully fabricated by a sol-gel method with porous anodic aluminum oxide as the template. Transmission electron microscopy and scanning electron microscopy showed that the synthesized LiFeP04 nanotubes were monodispersed and parallel to one another. Selected area electron diffraction pattern, X-ray diffraction and X-ray photoelectron spectroscopy investigations jointly demonstrated that the synthesized LiFePO4 nanotubes were pure olivine structure. This approach offered a potentially way for fabricating ordered LiFePO4 nanotubes at room temperature and ambient conditions, which might be expected to find promising application as a new cathode material in lithium ion battery,