The axisymmetric acoustic wave propagating in a perfect gas with a shear pipeline flow confined by a circular rigid wail is investigated. The governing equations of non-isentropic and isentropic acoustic assumptions are mathematically deduced while the constraint of Zwikker and Kosten is relaxed. An iterative method based on the Fourier-Bessel theory is proposed to semi-anaiyticaily solve the proposed models. A comparison of numerical results with literature contributions validates the present contribution. Meanwhile, the features of some high-order transverse modes, which cannot be analyzed based on the Zwikker and Kosten theory, are anaiyzed
In this paper,a new kind of flexible cone composed of the thin-walled plates based on space probecone docking mechanism for small-sized spacecraft is presented.The theoretical model of docking impact dynamics,which takes into account the additional stiffness terms,is derived based on Lagrange Analytical Mechanics theory and Hertz contact theory.Finite element method is employed for the discretization of the thin-walled plate.The results show that the traditional dynamic model without considering the additional stiffness terms will be difficult to reach steady state.The method proposed in this paper can correctly predict the dynamic behavior of the system.
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries.
Commercially available lattices contain various kinds of morphological imperfections which result in great degradation in lattices' mechanical properties, therefore, to obtain imperfection insensitive lattice structure is obviously a practical research subject. Hierarchical structure materials were found to be a class of promising anti-defect materials, This paper builds hierarchical lattice by adding soft adhesion to lattice's cell edges and numerical results show that its imperfection sensitivity to missing bars is minor compared with the classic lattice. Soft adhesion with appropriate properties reinforce cell edge's bending stiffness and thus reduce the bending deformation in lattice caused by missing bars defect, which is confirmed by statistical analysis of normalized node displacements of imperfect lattices under hydrostatic compression and shear loads.
The size effects of microstructure of lattice materials on structural analysis and minimum weight design are studied with extented multiscale finite element method(EMsFEM) in the paper. With the same volume of base material and configuration, the structural displacement and maximum axial stress of micro-rod of lattice structures with different sizes of microstructure are analyzed and compared.It is pointed out that different from the traditional mathematical homogenization method, EMsFEM is suitable for analyzing the structures which is constituted with lattice materials and composed of quantities of finite-sized micro-rods.The minimum weight design of structures composed of lattice material is studied with downscaling calculation of EMsFEM under stress constraints of micro-rods. The optimal design results show that the weight of the structure increases with the decrease of the size of basic sub-unit cells. The paper presents a new approach for analysis and optimization of lattice materials in complex engineering constructions.
We report a new noise-damping concept which utilizes a coupled mechanical-electrical acoustic impedance to attenuate an aeroacoustic wave propagating in a moving gas confined by a cylindrical pipeline. An electrical damper is incorporated to the mechanical impedance, either through the piezoelectric, electrostatic, or electro-magnetic principles. Our numerical study shows the advantage of the proposed methodology on wave attenuation. With the development of the micro-electro-mechanical system and material engineering, the proposed configuration may be promising for noise reduction.