The characteristic of intensity noise is degraded when stimulated Brillouin scattering (SBS) occurs in the fiber transmission systems. We use the localized fluctuating model to study SBS and obtain the curves of intensity fluctuations versus the single-pass gain. Corresponding experiments are also conducted. For the forward light, the relative intensity noise (RIN) dramatically increases at first and gradually stabilizes when the input power is above the SBS threshold. For the backward light, the RIN increases dramatically with the input power near the threshold. As the input power continues to increase, the RIN decreases quickly at first and subsequently decreases slowly. This observation is attributed to the lower frequencies.
Four-wave mixing induced by modulation instability in a single-mode fiber is analyzed from the phase-matching point of view. For the two-channel transmission, a method is proposed to select the four-wave-mixing-induced sidebands, which is based on the proper use of a continuous-wave and a pulse as light sources. We find that a mass of sidebands are generated in the modulation instability resonance region, and the power of the sideband increases with not only the peak power of the pump pulse but also the continuous-wave power which acts as a seed. The research will provide guidance for fiber communication and sensing systems using wavelength division multiplexing technology.
The phase noises of two narrow-linewidth fiber laser and laser diode are measured by using unbalanced Michelson interferometers with various optical path differences (OPDs). The measured results indicate that the phase noises of the two lasers do not change linearly with the OPD over the range from 1 to 100 m. The laser diode exhibits phase noise levels higher than that of the fiber laser at OPDs longer than 10 m. However, the laser diode outperforms the fiber laser at OPDs shorter than 10 m. The results obtained can assess laser performance and determine the suitable laser for use in a particular application.