A GIS-based method was used to assess land suitability in the Qinling Mountains, Shaanxi Province of China through simultaneous consideration of physical features and current land use. Through interpretation of Landsat TM images and extensive field visits the area was modeled into 40 land types in five altitudinal zones (valleys and gullies, hillsides and terraces, foothills, mid-mountain, and sub-alpine mountain). Then, a suitability score was assigned to five physical factors (climate, hydrology, topography, soil, and vegetation). Next, their integrated overall suitability value scores were compared with the observed land cover to determine whether it should be reallocated a new use. Results showed that the five suitability classes of agriculture, forest, grassland, farmland-woodland, and scrub-pasture had altitudinal stratification and a total of 1151 km2 (8.89%) of lands on the northern slopes of the Qinling Mountains had to be reallocated. To achieve this reallocation, 657 km2 of arable land should be reduced, and forest, grassland and scrub-pasture increased by 615 km2, 131 km2 and 405 km2, respectively. Implementation of these recommended land reallocations should help achieve suitable use of land resources and prevent land degradation.