In this paper, the problem of the global exponential stability analysis is investigated for a class of recurrent neural networks (RNNs) with time-varying discrete and distributed delays. Due to a novel technique when estimating the upper bound of the derivative of Lyapunov functional, we establish new exponential stability criteria in terms of LMIs. It is shown that the obtained criteria can provide less conservative results than some existing ones. Numerical examples are given to show the effectiveness of the proposed results.
This paper is concerned with the stability analysis for static recurrent neural networks (RNNs) with time-varying delay. By Lyapunov functional method and linear matrix inequality technique, some new delay-dependent conditions are established to ensure the asymptotic stability of the neural network. Expressed in linear matrix inequalities (LMIs), the proposed delay-dependent stability conditions can be checked using the recently developed algorithms. A numerical example is given to show that the obtained conditions can provide less conservative results than some existing ones.
A controller design is proposed for a class of high order nonholonomic systems with nonlinear drifts. The purpose is to ensure a solution for the closed-loop system regulated to zero. Adding a power integrator backstepping technique and the switching control strategy are employed to design the controller. The state scaling is applied to the recursive manipulation. The simulation example demonstrates the effectiveness and robust features of the proposed method.
This paper deals with the global asymptotic stability problem for Hopfield neural networks with time-varying delays. By resorting to the integral inequality and constructing a Lyapunov-Krasovskii functional, a novel delay-dependent condition is established to guarantee the existence and global asymptotic stability of the unique equilibrium point for a given delayed Hopfield neural network. This criterion is expressed in terms of linear matrix inequalities (LMIs), which can be easily checked by utilizing the recently developed algorithms for solving LMIs. Examples are provided to demonstrate the effectiveness and reduced conservatism of the proposed condition.