Usually the thermal expansion coefficients (TEC) of metals are higher than that of porcelains. In order to match the TECs in the case of coating porcelains on metals, high TEC porcelains are needed. In this research, the high TEC phase leucite (KAlSi2 O6) in the high TEC porcelain was prepared by sol-gel method. The crystal size of leucite made by sol-gel is about 77nm through controlling the process parameters. The process from xerogel to leucite was investigated by means of DSC (differential scanning calorimetry), TG (thermogravimetry), XRD ( X-ray diffraction) and IR (infrared absorption spectrum). Leucite had been detected after the gel was treated at 900℃, this formation temperature is about 250℃ lower than that of melting method. The porcelain made from 50% of the leucite powder and 50% of low fused temperature frit has an average TEC of 19.2×10-6/℃ C from room temperature to 450℃, which is much higher than the common porcelains.
J.P. Yang and J.Q. WuDept. of Inorganic Materials, South China University of Technology, Guangzhou 510640, China
Leucite particles were synthesized from feldspar mixed with 0% to 52% potassium nitrate fired from 800 ℃ to 1 200 ℃ by solid state method. The X-ray Diffraction (XRD) patterns show that in the temperature range from 800 ℃ to 1 200 ℃, the leucite can be removed as the single crystalline phase. Kalsilite may be crystallized with leucite at 800 ℃, but can be eliminated after prolonged heating. The scanning electron Microscopy (SEM) images clearly display the that crystals of micrometer scale leucite, and the leucite crystals distribute evenly in the matrix. The Thermal expansion coefficient (TEC) of the samples fabricated is as high as 20.52×10^-6 ℃^-1 measured from 20 ℃ to 500 ℃. The mechanism of transformation from feldspar to leucite was proposed.