Uniform core-shell Eu3+:Y2O3/SiO2 spheres were synthesized via precipitation and the Stber method.The structural transition of core-shell Eu3+:Y2O3/SiO2 was studied by using high pressure photoluminescence spectra.With pressure increasing,the emission intensities of 5D0→7F0,1,2 transitions of Eu3+ ions decreased and the transition lines showed a red shift.The relative luminescence intensity ratio of 5D0→7F2 to 5D0→7F1 transitions decreased with increasing pressure,indicating lowering asymmetry around Eu3+ ions.During compression,structural transformation for cores in the present core-shell Eu3+:Y2O3/SiO2 sample from cubic to monoclinic took place at 7.5 GPa,and then the monoclinic structure turned into hexagonal above 15.2 GPa.After the pressure was released,the hexagonal structure transformed back to monoclinic and the monoclinic structure was kept stable to ambient pressure.
A series of red-emitting Ca2_xA12SiOT:xEu^3+ (x = 1 mol.%-10 tool.%) phosphors were synthesized by the sol-gel method. The effects of annealing temperature and doping concentration on the crystal structure and luminescence properties of Ca2A12SiO7:Eu^3+ phosphors were investigated. X-ray diffraction (XRD) profiles showed that all peaks could be attributed to the tetragonal Ca2A12SiO7 phase when the sample was annealed at 1000℃. Scanning electron microscopy (SEM) micrographs indicate that the phosphors have an irregularly rounded mor- phology with particles of about 200 nm. Excitation spectra showed that the strong broad band at around 258 nm and weak sharp lines in 350-490 nm were attributed to the charge transfer band of Eu^3+-O^2- and f-f transitions within the 4f^6 configuration of Eu^3+ ions, respectively. Emission spectra implied that the red luminescence could be attributed to the transitions from the ^5D0 excited level to the 7Fj (J = 0, 1, 2, 3, 4) levels of Eu3+ions with the main electric dipole transition ^5D0→^7F2 (618 and 620 nm), and Eu^3+ ions prefer to occupy a lower symmetry site in the crystal lattice. Moreover, the photoluminescence (PL) intensity was strongly dependent on both the sintering temperature and doping concentration, and the highest PL intensity was observed at an Eu^3+ concentration x = 7 mol.% after annealing at ll00℃. The obtained Ca2A12SiO7:Eu^+3+ phosphor may have potential application for the red lamp phosphor.
Thin oxidized copper films in various thickness values are deposited onto quartz glass substrates by electron beam evaporation. The ellipsometry parameters and transmittance in a wavelength range of 300 nm-1000 nm are collected by a spectroscopic ellipsometer and a spectrophotometer respectively. The effective thickness and optical constants, i.e., refractive index n and extinction coefficient k, are accurately determined by using newly developed ellipsometry combined with transmittance iteration method. It is found that the effective thickness determined by this method is close to the physical thickness and has obvious difference from the mass thickness for very thin film due to variable density of film. Furthermore, the thickness dependence of optical constants of thin oxidized Cu films is analyzed.
It has already been found that the round shape of holes can be changed into hexagonal shape during plasma etching processes.This work aims to understand the mechanism behind such a shape change using particle simulation method.The distribution of electric field produced by electrons was calculated for different heights from the mask surface.It is found that the field strength reaches its maximum around a hole edge and becomes the weakest between two holes. The field strength is weakened as moving away from the surface.The spatial distribution of this electric field shows obvious hexagonal shape around a hole edge at some distances from the surface. This charging distribution then affects the trajectories of ions that fall on a mask surface so that the round hole edge is etched to become a hexagonal hole edge.The changing of this hole shape will again alter the spatial distribution of electric field to enhance the charging effect dynamically.