A partially linear model with longitudinal data is considered, empirical likelihood to infer- ence for the regression coefficients and the baseline function is investigated, the empirical log-likelihood ratios is proven to be asymptotically chi-squared, and the corresponding confidence regions for the pa- rameters of interest are then constructed. Also by the empirical likelihood ratio functions, we can obtain the maximum empirical likelihood estimates of the regression coefficients and the baseline function, and prove the asymptotic normality. The numerical results are conducted to compare the performance of the empirical likelihood and the normal approximation-based method, and a real example is analysed.
XUE LiuGen~(1+) & ZHU LiXing~2 1 College of Applied Sciences, Beijing University of Technology, Beijing 100022, China
The inference for the parameters in a semiparametric regression model is studied by using the wavelet and the bootstrap methods. The bootstrap statistics are constructed by using Efron's resampling technique, and the strong uniform convergence of the bootstrap approximation is proved. Our results can be used to construct the large sample confidence intervals for the parameters of interest. A simulation study is conducted to evaluate the finite-sample performance of the bootstrap method and to compare it with the normal approximation-based method.
In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the model is suggested by introducing the working covariance matrix. It is proved that the proposed statistic is asymptotically standard chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. A simulation study is conducted to compare the proposed method with the generalized least squares method in terms of coverage accuracy and average lengths of the confidence intervals.