您的位置: 专家智库 > >

国家自然科学基金(61375057)

作品数:2 被引量:0H指数:0
相关作者:冯哲杨绪兵薛晖更多>>
相关机构:东南大学南京林业大学更多>>
发文基金:国家自然科学基金更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇自动化与计算...

主题

  • 1篇学习机
  • 1篇神经网
  • 1篇神经网络
  • 1篇人工神经
  • 1篇人工神经网络
  • 1篇网络
  • 1篇极限学习机
  • 1篇工神经网络
  • 1篇VECTOR
  • 1篇CLUSTE...
  • 1篇GAUSSI...
  • 1篇KERNEL
  • 1篇MARGIN
  • 1篇MAXIMU...
  • 1篇INDEFI...
  • 1篇PLANE
  • 1篇人工神经网

机构

  • 1篇东南大学
  • 1篇南京林业大学

作者

  • 1篇薛晖
  • 1篇杨绪兵
  • 1篇冯哲

传媒

  • 1篇计算机应用
  • 1篇Fronti...

年份

  • 1篇2019
  • 1篇2017
2 条 记 录,以下是 1-2
排序方式:
A maximum margin clustering algorithm based on indefinite kernels
2019年
Indefinite kernels have attracted more and more attentions in machine learning due to its wider application scope than usual positive definite kernels. However, the research about indefinite kernel clustering is relatively scarce. Furthermore, existing clustering methods are mainly designed based on positive definite kernels which are incapable in indefinite kernel scenarios. In this paper, we propose a novel indefinite kernel clustering algorithm termed as indefinite kernel maximum margin clustering (IKMMC) based on the state-of-the-art maximum margin clustering (MMC) model. IKMMC tries to find a proxy positive definite kernel to approximate the original indefinite one and thus embeds a new F-norm regularizer in the objective function to measure the diversity of the two kernels, which can be further optimized by an iterative approach. Concretely, at each iteration, given a set of initial class labels, IKMMC firstly transforms the clustering problem into a classification one solved by indefinite kernel support vector machine (IKSVM) with an extra class balance constraint and then the obtained prediction labels will be used as the new input class labels at next iteration until the error rate of prediction is smaller than a prespecified tolerance. Finally, IKMMC utilizes the prediction labels at the last iteration as the expected indices of clusters.Moreover, we further extend IKMMC from binary clustering problems to more complex multi-class scenarios. Experimental results have shown the superiority of our algorithms.
Hui XUESen LIXiaohong CHENYunyun WANG
关键词:INDEFINITEKERNELMAXIMUMMARGINVECTORKERNEL
基于Plane-Gaussian神经网络的网络流状态监测
2017年
针对复杂网络环境下网络流监测(分类)问题,为实现多个类别直接分类以及提高学习方法的训练速度,提出了一种随机的人工神经网络学习方法。该方法借鉴平面高斯(PG)神经网络模型,引入随机投影思想,通过计算矩阵伪逆的方法解析获得网络连接矩阵,理论上可证明该网络具有全局逼近能力。在人工数据和标准网络流监测数据上进行了实验仿真,与同样采用随机方法的极限学习机(ELM)和PG网络相比,分析与实验结果表明:1)由于继承了PG网络的几何特性,对平面型分布数据更为有效;2)采用了随机方法,训练速度与ELM相当,但比PG网络快得多;3)三种方法中,该方法更有利于解决网络流监测问题。
杨绪兵冯哲顾一凡薛晖
关键词:极限学习机
共1页<1>
聚类工具0