The buildup of roof pollutants in an urban area of Shanghai, China was investigated by conducting 16 experiments between November 2007 and October 2008. Concentrations of Cu, Zn and Cd in runoff from three types of roof (concrete, aluminum and glass) exceeded USEPA National Recommended Water Quality Criteria. The solid/liquid partition of the selected metal elements was consistent for the three roof types: Al, Fe, Zn and Pb were present mainly in the particle-bound form, while the total loading of Cd was nearly 100% in the dissolved form. Atmospheric dry precipitation accounted for most of all pollutant loadings for all roof types, while roof material made only a minor contribution to the loadings. All pollutant accumulation rates except for COD showed a seasonal trend with peaks in spring (March^May) and winter (December^February) and troughs in summer (June^August) and autumn (September^November). Our results showed that a linear equation is the most reliable of commonly used buildup models to simulate the total phosphorus (TP) and total suspended solids (TSS) buildup processes on aluminum roofs and glass roofs. This study provided novel information about roof runoff in Shanghai, China, in terms of pollution status, pollution source and pollutant buildup processes, thereby aiding in rainwater utilization and non-point pollution control.
To investigate the dynamic characteristics of total suspended solids (TSS) and their particle-bound heavy metals in a first flush, the runoff sampling together with its flow rate measuring was conducted for three rainfall events at outfalls of highway in Shanghai from June to September 2007. Field samples were analyzed to determine the concentrations of TSS and particle-bound heavy metals, such as Zn, Pb, and Cu. Results show that the wash off behavior of TSS under varying runoff rate condition can be explained by different antecedent dry weather period (ADWP). Contribution of fine fraction (<45 μm) to TSS was generally higher than that of coarse fraction (>45 μm). When the runoff flow increased obviously, a significant contribution of the coarse fraction was observed for a certain rainfall events with long antecedent dry weather condition. The changes of total metals concentration and particle-bound metal concentrations were strongly dependent on the TSS variation. TSS was generally well correlated with most particulate-bound heavy metals. Of the heavy metals, the concentration of Zn was found considerably high and that of Pb was significantly low at North Zhongshan 2 Road, in Shanghai, China, but they are still within the range reported in the literature. Fluctuation of heavy metal contents in the coarse fraction during a first flush period was more significant compared with that in the fine fraction. The results will assist in the development of effective control strategies to minimize heavy metals and solids in highway runoff.
Considering the short length of building roofs, a theoretical analysis of the first flush of roof runoff was conducted based on the kinematic wave and pollutant erosion equations. This mathematical derivation with analytical solutions predicts pollutant mass first flush (MFF), mean concentration of initial runoff (MCIF), mean concentration of roof runoff (MCRR) with diversion of initial portion and residual mass available on the bed surface (RS) after the entire runoff under the condition of con-stant excess rainfall. And the effects of the associated influencing factors (roof length, roof gradient, roof surface roughness, rainfall intensity, rainfall duration, and erosion coefficients) on them were discussed while the values of parameters referred to the previous studies. The results showed that for roofs whose length is shorter than 20 m, both the increase in roof length and roof gradient and the decrease in roof surface roughness result in larger MFF and MCIF and smaller MCRR and RS, which is beneficial to water reuse and pollution reduction. The theoretical relationship between the first flush and the influencing factors may aid the planning and design of roof in terms of rainwater utilization or diffuse pollution control.