To improve the oxidation-resistance properties,SiC and TaC species were introduced in C/C composites by chemical vapor infiltration(CVI) methods. The oxidation-resistance properties of C-SiC-TaC-C composites were studied by X-Ray diffractometry(XRD),JEOL-6360LV scanning electronic microscopy(SEM) and AdventurerTM electronic balance with precision of 0.1 mg. The results show that,1) the oxidation rate of the composites increases continuously with time at all experimental temperatures;2) The oxidation rate increases with temperature within 700-1 100 ℃,slowly in 700-800 ℃,acutely in 800-1 100 ℃;it reaches a maximum value at 1 100 ℃,then decreases within 1 100-1 400 ℃;3) The relationship curve of oxidation rate with temperature can be divided into three regions. The oxidation rate is controlled by reactivity in region Ⅰ,the mixed effects of reactivity and gas diffusion in region Ⅱ,gas phase diffusion in region Ⅲ;4) The composites exhibit a higher oxidation onset temperature in low temperature region and a lower oxidation rate at high temperature due to the oxidation of TaC to(Ta,O) and the formation of the dense SiO2-Ta2O5 oxide layer respectively. With the addition of SiC/TaC species,the oxidation-resistant properties of C/C composites can be improved effectively.
Porous carbon/carbon preforms were infiltrated with melted silicon to form C/C-SiC composites. Three-layer Si-Mo coating prepared by slurry painting and SiC/Si-Mo multilayer coating prepared by chemical vapor deposition(CVD) alternated with slurry painting were applied on C/C-SiC composites, respectively. The oxidation of three samples at 1 500 ℃ was compared. The results show that the C/C-SiC substrate is distorted quickly. Three-layer Si-Mo coating is out of service soon due to the formation of many bubbles on surface. The mass loss of coated sample is 0.76% after 1 h oxidation. The sample with SiC/Si-Mo multilayer coating gains mass even after 105 h oxidation. SiC/Si-Mo multilayer coating can provide longtime protection for C/C-SiC composites and has excellent thermal shock resistance. This is attributed to the combination of dense SiC layer and porous Si-Mo layer. Dense SiC layer plays the dual role of physical and chemical barrier, and resists the oxidation of porous Si-Mo layer. Porous Si-Mo layer improves the thermal shock resistance of the coating.