We used a thin-film thermocouple to detect the thermal effect of surface plasmons excited in Au nanohole array structures.We found that the thermal electromotive force of Au film with periodic nanohole structures is three times greater than that of a bare Au film for 785-nm laser excitation at a given power.This effect is caused by the resonant excitation of localized surface plas- mons in the nanoholes.In addition,we found that the thermal electromotive force(EMF)of the Au film with dumbbell-like na- nohole arrays depends strongly on the incident polarization.The thermal EMF is the greatest when the excitation light is polarized perpendicular to the long axis of the dumbbell.
The exact electromagnetic enhancement mechanism behind SERS,TERS,HERS and SHINERS is one of the issues focused on in the study of enhanced Raman spectroscopy.The three dimensional finite difference time domain method(3D-FDTD),which is widely used in nanoplasmonic simulations,not only provides us with a powerful numerical tool for theoretical studies of the ERS electromagnetic enhancement mechanism,but also serves as a useful tool for the design of ERS-active systems with higher sensitivities and spectral spatial resolution.In this paper,we first introduce the fundamental principles of FDTD algorithms,and then the size-dependent dielectric function of dispersive metallic material is discussed.A comparative study of FDTD and rigorous Mie evaluations of electromagnetic fields in the vicinity of a system of self-similar nanospheres shows an excellent correlation between the two computational methods,directly confirming the validity and accuracy of 3D-FDTD simulations in ERS calculations.Finally,we demonstrate,using a TERS calculation as an example,that the non-uniform mesh method can be more computationally efficient without loss of accuracy if it is applied correctly.
YANG ZhiLinLI QianHongRUAN FangXiongLI ZhiPengREN BinXU HongXingTIAN ZhongQun