The stability of nanosized catalysts at high temperature is still a challenging topic and is a crucial criterion to evaluate their suitability for industrial use. Currently, the strategy to improve the high-temperature stability of nano-sized catalysts is to restrict the migration of particles on the surface, which, however, lacks theoretical knowledge and directions. Herein, we reported a new approach that can effectively inhibit the migration and agglomeration of supported nanoparticles by fabrication of a model catalyst Pt/CeO2/NiAl2O4/Al2O3@SiO2. This catalyst is highly stable with the microstructure unchanged even after being aged at 1000 °C. Density functional theory calculations indicate that two types of confinement effects exist in the catalyst and their mechanisms were well explained from the viewpoint of "energy traps" which can also be applied to other supported catalysts.
Jingwei LiKai LiLiwei SunZeshu ZhangZhijian WuYibo ZhangXiangguang Yang
Galvanic deposition method was used to prepare the Pd/Ni-Al2O3-GD catalyst for the combustion of methane under lean conditions. The new catalyst and compared catalysts (Pd/Al2O3-IW, Pd-Ni/Al2O3-IW, Pd/Ni-Al2O3-IW) prepared by incipient wetness impregnation were characterized by N2-physisorption, XRD and TEM to clarify particle size and size distribution of palladium species. Combined O2-TPD and XPS results with the catalytic data, it shows that the surface palladium species with low valence exhibits better combustion performance due to their stronger interaction with support. The results indicate that the galvanic deposition method is an effective route to prepare efficient catalyst for methane combustion, and it also provides useful information for improving the present commercial catalyst.