Frequency is one of the fundamental parameters of sound.The frequency of an acoustic stimulus can be represented by a neural response such as spike rate,and/or first spike latency(FSL)of a given neuron.The spike rates/frequency function of most neurons changes with different acoustic ampli-tudes,whereas FSL/frequency function is highly stable.This implies that FSL might represent the fre-quency of a sound stimulus more efficiently than spike rate.This study involved representations of acoustic frequency by spike rate and FSL of central inferior colliculus(IC)neurons responding to free-field pure-tone stimuli.We found that the FSLs of neurons responding to characteristic frequency(CF)of sound stimulus were usually the shortest,regardless of sound intensity,and that spike rates of most neurons showed a variety of function according to sound frequency,especially at high intensities.These results strongly suggest that FSL of auditory IC neurons can represent sound frequency more precisely than spike rate.