The AIEt3-promoted tandem reductive rearrangement reactions of epoxides was studied at B3LYP/6- 31C(d,p) level. For the model compound α-hydroxy epoxides, two possible reaction pathways Ⅰ and Ⅱ were calculated. The main difference is the order of ethylene release and six- to five-member ring rearrangement. The ring contraction rearrangement in pathway Ⅰ is the first step and this step is the rate controlling step with a free energy barrier of 116.62 kJ/mol. For pathway Ⅱ, the ethylene release occurs first, and is followed by a six-member ring opening reaction which is the rate controlling step, and the barrier is 251.38 kJ/mol. The reason for such high barrier is that the ethylene release results in the following reaction being more difficult. The results show that pathway Ⅰ (C-C rearrangement and then ethylene release) is more favorable, which is consistent with experimental results.