Based on the steady-state seepage method, we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three types of crushed rock samples. Three methods of confidence interval in describing permeability coefficients are presented: the secure interval, the calculated interval and the systemic interval. The lower bound of the secure interval can be applied to water-inrush and the upper bound can solve the problem of connectivity. For the calculated interval, as the axial pressure increases, the length of confidence interval is shortened and the upper and lower bounds are reduced. For the systemic interval, the length of its confidence interval, as well as the upper and lower bounds, clearly vary under low axial pressure but are fairly similar under high axial pressure. These three methods provide useful information and references for analyzing the permeability coefficient of over-broken rock.
By means of reasonable assumption and mathematical derivation, a theoretic expression of flow rate for a single fracture with linearly varying width was obtained. The mathematical derivation was based on the cubic law and the new theoretic expression was an extention of traditional parallel plate model. This study may help to analyze seepage in fractured rock mass.