A 2-D Finite Volume Model (FVM) is developed for shallow water flows over a complex topography with wetting and drying processes. The numerical fluxes are computed using the Harten, Lax, and van Leer (HLL) approximate Riemann solver. Second-order accuracy is achieved by employing the MUSCL reconstruction method with a slope limiter in space and an explicit two-stage Runge-Kutta method for time integration. A simple and efficient method is introduced to deal with the wetting and drying processes without any correction of the numerical flux term or the source term. In this new method, a switch of alternative schemes is used to compute the water depths at the cell interface to obtain the numerical flux. The model is verified against benchmark tests with analytical solutions and laboratory experimental data. The numerical results show that the model can simulate different types of flood waves from the ideal flood wave to cases over complex terrains. The satisfactory performance indicates an extensive application pro- spect of the present model in view of its simplicity and effectiveness.